Folding, Quality Control, and Secretion of Pancreatic Ribonuclease in Live Cells*

نویسندگان

  • Roger Geiger
  • Matthias Gautschi
  • Friederike Thor
  • Arnold Hayer
  • Ari Helenius
چکیده

Although bovine pancreatic RNase is one of the best characterized proteins in respect to structure and in vitro refolding, little is known about its synthesis and maturation in the endoplasmic reticulum (ER) of live cells. We expressed the RNase in live cells and analyzed its folding, quality control, and secretion using pulse-chase analysis and other cell biological techniques. In contrast to the slow in vitro refolding, the protein folded almost instantly after translation and translocation into the ER lumen (t(½) < 3 min). Despite high stability of the native protein, only about half of the RNase reached a secretion competent, monomeric form and was rapidly transported from the rough ER via the Golgi complex (t(½) = 16 min) to the extracellular space (t(½) = 35 min). The rest remained in the ER mainly in the form of dimers and was slowly degraded. The dimers were most likely formed by C-terminal domain swapping since mutation of Asn(113), a residue that stabilizes such dimers, to Ser increased the efficiency of secretion from 59 to 75%. Consistent with stringent ER quality control in vivo, the secreted RNase in the bovine pancreas was mainly monomeric, whereas the enzyme present in the cells also contained 20% dimers. These results suggest that the efficiency of secretion is not only determined by the stability of the native protein but by multiple factors including the stability of secretion-incompetent side products of folding. The presence of N-glycans had little effect on the folding and secretion process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تاثیر عصاره هیدروالکلی کاکوتی کوهی (Ziziphora clinopodioides Lam) بر تعداد سلول‎های فعال بتای پانکراس در موشهای سوری دیابتی نوع یک ناشی از استرپتوزوتوسین

Background: Diabetes is a metabolic disorder caused by insufficient production of insulin or insulin receptors deficiency. It is now the major cause of morbidity and hospitalization in patients with a significant financial burden to the society. The aim of this study was to evaluate the effect of Ziziphora ethanolic extract on active pancreatic beta cells on streptozotocin induced diabetic mice...

متن کامل

The role of noggin in regulation of high glucose-induced apoptosis and insulin secretion in INS-1 rat beta cells

Objective(s):The purpose of this study was to investigate the effects of Noggin on high glucose-induced apoptosis and insulin secretion in pancreatic beta cells. Materials and Methods: Different concentrations of glucose were used to examine their effects on INS-1 rat beta cells in vitro. When specific siRNA targeting Noggin and recombinant Noggin were added, apoptosis and insulin secretion wer...

متن کامل

Salvianolic acid B improves insulin secretion from interleukin 1β-treated rat pancreatic islets: The role of PI3K-Akt signaling

Background and Objective: Oxidative stress induced by proinflammatory cytokines such as IL-1β plays a major role in β-cell destruction in diabetes type 1. Salvianolic acid B (Sal B) is a polyphenolic compound with antioxidant and protective effects. Thus, objective of this study was to assess the protection exerted by Sal B on isolated rat islets exposed to IL-1β and to investigate an underlyin...

متن کامل

بررسی اثر گلی‌بن‌کلامید بر ترشح انسولین و فعالیت گلوکوکیناز در جزایر لانگرهانس پانکراس موش‌های صحرایی سالم و دیابتی

Background: Sulfonylurea agents such as Glibenclamide (Glyburide) have been widely prescribe in treatment of type 2 diabetic patients for decades, but controversy remains about their precise mechanism of action. On the other hand, glucokinase serves as a glucose sensor in pancreatic β-cells and plays a key role in the regulation of insulin secretion and glucose homeostasis. The aim of the pres...

متن کامل

Minor folding defects trigger local modification of glycoproteins by the ER folding sensor GT.

UDP-glucose:glycoprotein glucosyltransferase (GT) is a key component of the glycoprotein-specific folding and quality control system in the endoplasmic reticulum. By exclusively reglucosylating incompletely folded and assembled glycoproteins, it serves as a folding sensor that prolongs the association of newly synthesized glycoproteins with the chaperone-like lectins calnexin and calreticulin. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 286  شماره 

صفحات  -

تاریخ انتشار 2011